We included 122 RCTs (28,561 participants). Of these, 83 RCTs, encompassing 21 different comparisons, were included in meta-analyses. Included participants were men and women with a mean age of 57.5 years who were recruited from hospital settings. Twenty-nine studies included people whose cancer had spread to their brains. Interventions were categorised into five groups: conventional chemotherapy (including single agent and polychemotherapy), biochemotherapy (combining chemotherapy with cytokines such as interleukin-2 and interferon-alpha), immune checkpoint inhibitors (such as anti-CTLA4 and anti-PD1 monoclonal antibodies), small-molecule targeted drugs used for melanomas with specific gene changes (such as BRAF inhibitors and MEK inhibitors), and other agents (such as anti-angiogenic drugs). Most interventions were compared with chemotherapy. In many cases, trials were sponsored by pharmaceutical companies producing the tested drug: this was especially true for new classes of drugs, such as immune checkpoint inhibitors and small-molecule targeted drugs.When compared to single agent chemotherapy, the combination of multiple chemotherapeutic agents (polychemotherapy) did not translate into significantly better survival (overall survival: HR 0.99, 95% CI 0.85 to 1.16, 6 studies, 594 participants; high-quality evidence; progression-free survival: HR 1.07, 95% CI 0.91 to 1.25, 5 studies, 398 participants; high-quality evidence. Those who received combined treatment are probably burdened by higher toxicity rates (RR 1.97, 95% CI 1.44 to 2.71, 3 studies, 390 participants; moderate-quality evidence). (We defined toxicity as the occurrence of grade 3 (G3) or higher adverse events according to the World Health Organization scale.)Compared to chemotherapy, biochemotherapy (chemotherapy combined with both interferon-alpha and interleukin-2) improved progression-free survival (HR 0.90, 95% CI 0.83 to 0.99, 6 studies, 964 participants; high-quality evidence), but did not significantly improve overall survival (HR 0.94, 95% CI 0.84 to 1.06, 7 studies, 1317 participants; high-quality evidence). Biochemotherapy had higher toxicity rates (RR 1.35, 95% CI 1.14 to 1.61, 2 studies, 631 participants; high-quality evidence).With regard to immune checkpoint inhibitors, anti-CTLA4 monoclonal antibodies plus chemotherapy probably increased the chance of progression-free survival compared to chemotherapy alone (HR 0.76, 95% CI 0.63 to 0.92, 1 study, 502 participants; moderate-quality evidence), but may not significantly improve overall survival (HR 0.81, 95% CI 0.65 to 1.01, 2 studies, 1157 participants; low-quality evidence). Compared to chemotherapy alone, anti-CTLA4 monoclonal antibodies is likely to be associated with higher toxicity rates (RR 1.69, 95% CI 1.19 to 2.42, 2 studies, 1142 participants; moderate-quality evidence).
We found high-quality evidence that many treatments offer better efficacy than chemotherapy, especially recently implemented treatments, such as small-molecule targeted drugs, which are used to treat melanoma with specific gene mutations. Compared with chemotherapy, biochemotherapy (in this case, chemotherapy combined with both interferon-alpha and interleukin-2) and BRAF inhibitors improved progression-free survival; BRAF inhibitors (for BRAF-mutated melanoma) and anti-PD1 monoclonal antibodies improved overall survival. However, there was no difference between polychemotherapy and monochemotherapy in terms of achieving progression-free survival and overall survival. Biochemotherapy did not significantly improve overall survival and has higher toxicity rates compared with chemotherapy.There was some evidence that combined treatments worked better than single treatments: anti-PD1 monoclonal antibodies, alone or with anti-CTLA4, improved progression-free survival compared with anti-CTLA4 monoclonal antibodies alone. Anti-PD1 monoclonal antibodies performed better than anti-CTLA4 monoclonal antibodies in terms of overall survival, and a combination of BRAF plus MEK inhibitors was associated with better overall survival for BRAF-mutated melanoma, compared to BRAF inhibitors alone.The combination of BRAF plus MEK inhibitors (which can only be administered to people with BRAF-mutated melanoma) appeared to be the most effective treatment (based on results for progression-free survival), whereas anti-PD1 monoclonal antibodies appeared to be the least toxic, and most acceptable, treatment.Evidence quality was reduced due to imprecision, between-study heterogeneity, and substandard reporting of trials. Future research should ensure that those diminishing influences are addressed. Clinical areas of future investigation should include the longer-term effect of new therapeutic agents (i.e. immune checkpoint inhibitors and targeted therapies) on overall survival, as well as the combination of drugs used in melanoma treatment; research should also investigate the potential influence of biomarkers.
We found high-quality evidence that many treatments offer better efficacy than chemotherapy, especially recently implemented treatments, such as small-molecule targeted drugs, which are used to treat melanoma with specific gene mutations. Compared with chemotherapy, biochemotherapy (in this case, chemotherapy combined with both interferon-alpha and interleukin-2) and BRAF inhibitors improved progression-free survival; BRAF inhibitors (for BRAF-mutated melanoma) and anti-PD1 monoclonal antibodies improved overall survival. However, there was no difference between polychemotherapy and monochemotherapy in terms of achieving progression-free survival and overall survival. Biochemotherapy did not significantly improve overall survival and has higher toxicity rates compared with chemotherapy.There was some evidence that combined treatments worked better than single treatments: anti-PD1 monoclonal antibodies, alone or with anti-CTLA4, improved progression-free survival compared with anti-CTLA4 monoclonal antibodies alone. Anti-PD1 monoclonal antibodies performed better than anti-CTLA4 monoclonal antibodies in terms of overall survival, and a combination of BRAF plus MEK inhibitors was associated with better overall survival for BRAF-mutated melanoma, compared to BRAF inhibitors alone.The combination of BRAF plus MEK inhibitors (which can only be administered to people with BRAF-mutated melanoma) appeared to be the most effective treatment (based on results for progression-free survival), whereas anti-PD1 monoclonal antibodies appeared to be the least toxic, and most acceptable, treatment.Evidence quality was reduced due to imprecision, between-study heterogeneity, and substandard reporting of trials. Future research should ensure that those diminishing influences are addressed. Clinical areas of future investigation should include the longer-term effect of new therapeutic agents (i.e. immune checkpoint inhibitors and targeted therapies) on overall survival, as well as the combination of drugs used in melanoma treatment; research should also investigate the potential influence of biomarkers.
We found high-quality evidence that many treatments offer better efficacy than chemotherapy, especially recently implemented treatments, such as small-molecule targeted drugs, which are used to treat melanoma with specific gene mutations. Compared with chemotherapy, biochemotherapy (in this case, chemotherapy combined with both interferon-alpha and interleukin-2) and BRAF inhibitors improved progression-free survival; BRAF inhibitors (for BRAF-mutated melanoma) and anti-PD1 monoclonal antibodies improved overall survival. However, there was no difference between polychemotherapy and monochemotherapy in terms of achieving progression-free survival and overall survival. Biochemotherapy did not significantly improve overall survival and has higher toxicity rates compared with chemotherapy.There was some evidence that combined treatments worked better than single treatments: anti-PD1 monoclonal antibodies, alone or with anti-CTLA4, improved progression-free survival compared with anti-CTLA4 monoclonal antibodies alone. Anti-PD1 monoclonal antibodies performed better than anti-CTLA4 monoclonal antibodies in terms of overall survival, and a combination of BRAF plus MEK inhibitors was associated with better overall survival for BRAF-mutated melanoma, compared to BRAF inhibitors alone.The combination of BRAF plus MEK inhibitors (which can only be administered to people with BRAF-mutated melanoma) appeared to be the most effective treatment (based on results for progression-free survival), whereas anti-PD1 monoclonal antibodies appeared to be the least toxic, and most acceptable, treatment.Evidence quality was reduced due to imprecision, between-study heterogeneity, and substandard reporting of trials. Future research should ensure that those diminishing influences are addressed. Clinical areas of future investigation should include the longer-term effect of new therapeutic agents (i.e. immune checkpoint inhibitors and targeted therapies) on overall survival, as well as the combination of drugs used in melanoma treatment; research should also investigate the potential influence of biomarkers.
We found high-quality evidence that many treatments offer better efficacy than chemotherapy, especially recently implemented treatments, such as small-molecule targeted drugs, which are used to treat melanoma with specific gene mutations. Compared with chemotherapy, biochemotherapy (in this case, chemotherapy combined with both interferon-alpha and interleukin-2) and BRAF inhibitors improved progression-free survival; BRAF inhibitors (for BRAF-mutated melanoma) and anti-PD1 monoclonal antibodies improved overall survival. However, there was no difference between polychemotherapy and monochemotherapy in terms of achieving progression-free survival and overall survival. Biochemotherapy did not significantly improve overall survival and has higher toxicity rates compared with chemotherapy.There was some evidence that combined treatments worked better than single treatments: anti-PD1 monoclonal antibodies, alone or with anti-CTLA4, improved progression-free survival compared with anti-CTLA4 monoclonal antibodies alone. Anti-PD1 monoclonal antibodies performed better than anti-CTLA4 monoclonal antibodies in terms of overall survival, and a combination of BRAF plus MEK inhibitors was associated with better overall survival for BRAF-mutated melanoma, compared to BRAF inhibitors alone.The combination of BRAF plus MEK inhibitors (which can only be administered to people with BRAF-mutated melanoma) appeared to be the most effective treatment (based on results for progression-free survival), whereas anti-PD1 monoclonal antibodies appeared to be the least toxic, and most acceptable, treatment.Evidence quality was reduced due to imprecision, between-study heterogeneity, and substandard reporting of trials. Future research should ensure that those diminishing influences are addressed. Clinical areas of future investigation should include the longer-term effect of new therapeutic agents (i.e. immune checkpoint inhibitors and targeted therapies) on overall survival, as well as the combination of drugs used in melanoma treatment; research should also investigate the potential influence of biomarkers.