A total of 420 DEGs were identified. The biological functions and signaling pathways closely associated with PM were inflammatory and immune processes. A series of four expression modules were obtained by WGCNA analysis, with the turquoise module having the highest correlation with PM; 196 crossover genes were obtained by combining DEGs. Subsequently, six hub genes were finally identified as the potential biomarkers of PM using LASSO algorithm and validation set verification analysis. In the immune cell infiltration analysis, the infiltration of T lymphocytes and subpopulations, dendritic cells, macrophages, and natural killer cells was more significant in the PM.
Polymyositis (PM) is an acquirable muscle disease with proximal muscle involvement of the extremities as the main manifestation; it is a category of idiopathic inflammatory myopathy. This study aimed to identify the key biomarkers of PM, while elucidating PM-associated immune cell infiltration and immune-related pathways. A series of four expression modules were obtained by WGCNA analysis, with the turquoise module having the highest correlation with PM; 196 crossover genes were obtained by combining DEGs. Subsequently, six hub genes were finally identified as the potential biomarkers of PM using LASSO algorithm and validation set verification analysis.
A weighted gene coexpression network was constructed, and the genes were divided into 66 modules. The enriched functions and candidate pathway modules included interferon-γ, type I interferon, cellular response to interferon-γ, neutrophil activation, neutrophil degranulation, neutrophil-mediated immunity and neutrophil activation involved in the immune response. A total of 22 hub genes were identified. The Mann-Whitney U test was performed on these 22 genes using the three datasets of muscle samples and one dataset of whole blood samples, and two genes significantly differentially expressed in all datasets were obtained: VCAM1 and LY96. Receiver operating characteristic curve analysis determined that VCAM1 and LY96 gene expression can distinguish PM from healthy controls (the area under the curve [AUC] was greater than 0.75). Logistic regression analysis was performed on the combination of LY96 and VCAM1. The accuracy, sensitivity, specificity, and AUC of the combination reached 1.0. GSEA of VCAM1 and LY96 revealed their relation to 'inflammatory response', 'TNF-α signalling via NF-κB', 'complement' and 'myogenesis'. CMap research revealed a few compounds with the potential to counteract the effects of the dysregulated molecular signature in PM.
To identify the candidate genes of PM, microarray datasets GSE128470, GSE3112, GSE39454 and GSE125977 were obtained from the Gene Expression Omnibus database. The gene network of GSE128470 was constructed, and WGCNA was used to divide genes into different modules. Subsequently, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were applied to the most PM-related modules. The datasets were used to verify the expression profile and diagnostic capabilities of the hub genes. Additionally, gene set enrichment analysis (GSEA) was carried out. Moreover, gene signatures were then used as a search query to explore the connectivity map (CMap).