We established a dextran sodium sulfate (DSS)-induce BALB/c mice model of IBD and treated with hucMSC-Ex via tail vein to evaluate their repair effect on IBD mice. An in vitro macrophage inflammation model was established using lipopolysaccharide (LPS) and Nigericin (Nig) by stimulating mouse macrophage RAW264.7 and human myeloid leukemia mononuclear (THP-1) cells to assess the repair effect of hucMSC-Ex on macrophage inflammation. EX 527, an effective inhibitor of silent information regulator of transcription 1 (SIRT1), was employed in both the in vivo and in vitro models to explore the effect of hucMSC-Ex on the SIRT1-FXR (farnesoid X receptor) pathway in macrophages during the attenuation of inflammation.
HucMSC-Ex effectively inhibited inflammation in both the in vivo and in vitro models by up-regulating the expressions of SIRT1 and FXR, which reduced the acetylation level of FXR and inhibited the activation of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome. The addition of EX 527 further proved that hucMSC-Ex can reduce the acetylation of FXR by activating the SIRT1-FXR pathway, and the decrease of FXR acetylation was directly related to the inhibition of the activity of the NLRP3 inflammasome.